We teach the following degrees in Games Technology and Mathematics:
We run an MSc Computer Games Technology course that gives you the skills and expertise needed to enter the Video Games Industry. Topics includes:
Immersive Experiences and Technologies - MSc by Research, MPhil, PhD
Applied Games - MSc by Research, MPhil, PhD
Data Science & Informatics MSc by Research, MPhil, PhD
Computer Games Development and Technology MSc by Research, MPhil, PhD
And many more. For a full list of Postgraduate Research Areas please visit our course search.
Central to the Division's research activity is our expertise in computer games technologies, in particular, the computer science and mathematics at the core of those technologies.
The aim is to broaden the range of interactive experiences possible within the realm of computer games or to unlock the wider economic benefits of game technology. This covers one of Abertay’s research priority areas, the Creative Industries theme.
In partnership with the Division of Games and Arts, our research drives new forms of game-based interactions and simulations. We have also exploited games technologies in food and energy security and in healthcare as part of another priority research area, the Environment.
Our research develops real-time animations for use in games and in virtual and augmented realities. In the computer games context we are drawing on methods from mathematics and physics to create physically based and realistic real-time interactive fluid simulations.
The physics-based characteristic can be linked to gameplay mechanics to enhance the user experience.
A physics-based animation framework has been developed to facilitate the creation of interactive deformable characters. This allows the movement of the deformable character to be controlled in a predicable manner, but also facilitate the creation of deformation-based behaviours.
Virtual and augmented realities present unique challenges and opportunities for interactive experiences and the Division is exploring modes of interaction with these technologies and their convergence with e.g. film and artificial intelligence. With industry partners we are exploring the enterprise applications of Augmented and Virtual Realities for real-time data visualisation.
We are developing AR and VR experiences on a range of technology platforms and are testing these platforms in different contexts. We are especially interested in combining games technology and play with virtual and augmented platforms. We are also evaluating qualitatively and quantitatively, through psychophysiological measures, the user experience to measure how users engage with AR/VR experiences.
The Division also undertakes research in complex systems modelling in a range of different domains including the environment and healthcare. Our overarching agenda is the construction of playable simulations, i.e. simulations of complex systems drawing on game technology e.g. explorable game-based interfaces, customisation, aesthetics and optimisation via hardware acceleration.
This playability allows domain experts to investigate complex systems in an intuitive way and supports discovery of new insights.
In the environment, a central challenge is to safeguard the UK’s water, energy and food security – three of the UK’s most valuable resources that are rapidly running out. We are using our expertise in complex systems modelling and interactive visualisation to help stakeholders determine the impact of different sustainability initiatives and policies across water, energy and food that might interact to deliver solutions that will work for the system as a whole.
We use games technologies to enable life scientists to conduct virtual experiments exploring the impact of anti-cancer drugs on cell behaviour. We have built a cancer cell signalling visualisation toolkit able to convert existing computer models of cell behaviour into dynamic, colour-coded animations.
Drugs and cancer-causing mutations can be added, allowing for exploration of the dynamics of cell signalling pathways in a way that has not been possible before.
In our games programming research, we also make use of the rendering and compute functionalities offered by the GPU to increase spatial and temporal scale of simulations. Interpretation of simulation output can be challenging and we advocate the 'built-in' visual simulation afforded by GPGPU implementations that employ optimisations that are standard in the production of real-time interactive scenes. We are extending our cancer cell signalling research, to implement a virtual tumour using a distributed approach that permits more complex responses to drugs because of interactions with other cells, the cell microenvironment, and oxygen and nutrient availability.
Our expertise in programming also extends to design patterns and in partnership with the Division of Cyber Security we have been developing design patterns to improve computer system security.
We are exploring how AI and deep learning can generate content for games, and how data analytics can improve the player and learner experience – the latter for applied games and educational tools. We are also applying affective computing techniques and emotion modelling to improve game AI and player immersion.
Our expertise is broadening its reach into areas including Health, Community and Social Care. Almost all of our research projects are rooted in real-world problems and are client facing, e.g. games companies, charities, Innovation centres etc.
Building on our GPGPU expertise we are exploring GPU efficiencies for high fidelity real-time games and simulations across diverse hardware. Of interest is how new raytracing technology and GPGPU programming may be leveraged, creating new acceleration structures and rasterization formats. This includes applying continuous functional representations and grammars with raytracing instead of traditional polygonal rendering. Applications include the cancer research work and the rendering of the 4D virtual tumour.
For Job Openings, including Research Fellowships in our School, view the job search section on our website.
For PhD Studentships in any of our Subject areas, check out the Funded research projects and Postgraduate Research Funding sections.