Computing

This fast-paced and wide-ranging Computing degree will prepare you for a rewarding career in any number of industries.

Course detail

Start Date

September

Duration

4 years (full-time)

Award Title

BSc (Hons)

UCAS Code

G400

Why Study Abertay's BSc (Hons) in Computing?

Explore systems architecture, programming design, coding, platform technologies, software engineering and other areas of computer science on this fast-paced and wide-ranging degree that prepares you for a rewarding career in the computing industry.

In an industry where new hardware, software and production technologies are emerging at breakneck speed, computing experts with the ability to apply creativity to existing and future problem areas are in high demand.

This practical programme focuses on software development for mobile, desktop and web platforms, with emphasis on constructing effective, efficient, robust, and maintainable solutions.

Our computing degree is designed to equip you with high-level subject-specific knowledge, as well as the practical and transferable skills you need to gain a foothold in the computing industry or proceed to further advanced study.

This programme is regularly reviewed to keep up-to-date with current professional technologies.

This course scored an incredible 97% for the quality of our Academic Support in the 2020 National Student Survey. 

Abertay is widely regarded as THE place to come for high quality teaching. But don't take our word for it:

  • Sunday Times UK University of the Year 2020 for Teaching Quality.
  • Guardian University Guide 2020 Top 10 in the UK for Student Satisfaction with TeachingCourse and Feedback.
  • National Student Survey 2020 Top 10 UK Universities for Student Satisfaction.

Your Journey Starts Here

Computers are ubiquitous in the modern world. They're used in all aspects of work and life, and are constantly evolving. This programme is designed to provide you with all the knowledge and skills to enter the industry, regardless of your prior experience. 

About Your Modules

All modules shown are indicative and reflect course content for the current academic year. Modules are reviewed annually and may be subject to change. If you receive an offer to study with us we will send you a Programme document  that sets out exactly which modules you can expect to take as part of your Abertay University degree programme. Please see Terms and Conditions for more information.

Modules

Year 1 Core Modules

You must study and pass all five core modules

Brief description

Introduction to the core ideas of computer architecture. Build a mental model of the functioning of a typical computer system that can be used to reason about system (hardware/software) behaviour - and be extended in later modules.

Indicative content:

  • Computer architecture: Principal low-level components (logic gates, logic blocks) and what they do, bus interconnections, memory, storage devices.
  • Data representation: Bits, integers, floating and fixed point, text, colours, bitmaps, bitwise operations.
  • Machine instructions: The von Neumann architecture, a modern CPU, arithmetic, control flow, the stack.
  • Operating systems: Userspace and kernelspace, drivers, scheduling, memory management, filesystems, use of operating systems (e.g. Linux) to support simple system management, OS level security concepts.

Brief description

Introduction to Computer Networks through an analysis of basic networking fundamentals.

Indicative content:

  • Networking fundamentals: Architecture: circuit and packet switched networks; copper, fibre and wireless media. Effects of media on bandwidth and data throughput. Review of hubs, switches and routers and their advantages/disadvantages in a network configuration e.g. Ethernet and data link layer.
  • Network layers: Data segmentation and encapsulation. Use of MAC and IP addresses by network switches and routers. TCP and UDP protocols. Class based networks, allocation of IP address and their identification. Need for and determination of subnets and subnet masks.
  • Network models, protocols, applications: OSI model vs TCP/IP. Protocols and applications related to Application layer, Transport layer, Network layer, Data link layer, and Physical layer and their functionalities.
  • Networking analysis: Analysis of network traffic. Application of tools used to analyse communication on local networks. Understanding network traffic. Methods of analysing network convesations.
  • Application of network knowledge: Designing computer networks. Network hardware, logistical and routing considerations. Troubleshooting networks. Building network applications, creating networking software that use sockets to communicate.

Brief description

Gain the ability to plan, develop and test object-oriented computer programs for a range of routine programming problems.

Indicative content:

  • Object oriented program development: Use an object-oriented program development environment, creating source code, compilation, linking, execution de−bugging and development.
  • Introduction to Object Orientation: Read, understand and modify small object-oriented programs.
  • Programming constructs: Make use of declarations, data types, assignment, operators, selection, iteration and functions for a range of programming problems.
  • Aggregate types: Arrays and algorithms - increased programming power. Storage, access and direct access to computer memory (pointers). Classes and structs. 
  • Program development and testing: Pseudo-code and step-wise refinement, use of functions as program units for organisation and efficiency.

Brief description

This module complements earlier programming modules by introducing - in a practical rather than theoretical way - some of the fundamental ideas of software engineering to develop and communicate designs for small and large scale software systems.

Indicative content:

  • Problem-solving: Capturing requirements, general problem-solving techniques, testing, the idea of a non-programming language.
  • Classes and Objects: Develop software using class defintions, methods, data, constructors and instantiation. Create basic class inheritance structures within a sofware solution using two classes. 
  • Security: Encapsulating objects using public and private access modifiers. Constructors.
  • OO analysis design and implementation: Identify objects in a system and structure data and information in class definitions. Mapping object-oriented design principles to programming constructs.
  • Abstraction: Understand how to work with complexity by using code abstraction, code blocks and control flows.
  • Class modelling: Introduction to UML class diagrams.
  • Data design – an OO approach: Modelling using object-oriented techniques, drawing informal and formal diagrams to describe information and behaviour (including UML), design patterns.
  • Data design – a relational approach: Modelling using relational techniques, theoretical and practical design concerns, constructing and querying a database using basic SQL Modelling using relational techniques, theoretical and practical design concerns, constructing and querying a database using basic SQL.

Brief description

Learn to contextualise software development within other subjects in computing, particularly computer security and web development. Within a wider context, consider and discuss social, ethical, professional and legal aspects.

Indicative content:

  • Introduction: The pace of change; impact of modern technology on society and individuals; ethical guidelines for computer professionals - codes of conduct.
  • Computer Crime: Definition; examples including malware, hacking, identity theft, social engineering, phishing etc.
  • Computer Security: Threats and Vulnerabilities; the current state of computer security; securing networks, accounts and devices. Human aspects of cybersecurity.
  • Design components: Colour, Perception.
  • Privacy in the information Society: Privacy principles, policies and risks; authentication and privacy; privacy on the web; email security; privacy impacts of emerging technologies (e.g. cloud, VoIP, RFC); the privacy/ accountability dilemma.
  • Legal Issues: Data Protection Act, Computer Misuse Act, Copyright and Intellectual Property, GDPR.
  • Access, Accessibility and Usability: The digital divide; Enabling and Disabling through technology; accessibility standards; usability fundamentals. Usability vs Security.
  • Internet Fundamentals and Web Standards: HTTP and related protocols; benefits of web standards; W3C, Accessibility; regulating internet content; whose laws rule the web?
  • Web Development Fundamentals: Fundamentals of Mark up; structural elements; HTML5 and CSS; navigation; organising information; working with data stores.
  • Design for the future: Responsive web design.

Years 1 and 2 Elective Modules

You must study and pass one elective module of your choosing

Brief description

Introduction of the concept of smart cities - hard infrastructure, social capital including local skills and community institutions, and digital technologies to fuel sustainable economic development and provide an attractive environment for all.

Module content:

  • Social impacts

There is an overall need for theoretical and methodological plurality in how we assess the impact and value of future cities in terms for individual and societal well−being. Gaps in our understanding relate to the complex ways individuals and groups engage with built and natural settings, the cultural goods and consequent benefits that may arise and the inequalities associated with these cultural benefits.

  • Security

Different types of cyber-attacks that could be launched against a Smart City. Impact of cyber-attacks. Approaches to securing the smart grid and critical infrastructure, i.e. improving cyber resilience.

  • Sustainable urban food production

Includes the long established allotments movement to large-scale projects based on sustainability throughout the food chain. Urban food production includes the long established allotments movement. The demand for urban growing also responds to the densification and intensification of living areas, due to population rise, migration and demographic aging with lower housing and ‘garden’ space standards placing greater importance on collective production.

  • Energy, waste and water

At present, water and wastewater facilities are often the largest and most energy intensive responsibilities owned and operated by local governments, representing up to 35% of municipal energy use. Future cities will need to utilise more sustainable methods of water and wastewater management and renewable energy production.

  • Digital technologies

​Digital technologies will play a major role in creating sustainable and resilient cities offering a vehicle for more inclusive decision−making process and promoting dialog amongst architects, urban planners, the public and technologists.

Brief description

Develop a range of skills, knowledge and techniques within the natural, technological and social sciences relevant to the study of environmental sustainability and life in the twenty-first century. Understand the critical issues that confront humanity and begin to discern appropriate responses.

Module content:

The challenge of sustainable development
Problems associated with life in the 21st Century and the relationship to scientific provisionalism and uncertainty.

The genesis of sustainable development concept
Developments associated with the Club of Rome are outlined while Limits to Growth and the Tragedy of the Commons.

Evolution of sustainable development
The Reo Summit and Suitability, and Policy Developments thereof.

Scientific inquiry and sustainable development
Controversial issues like climate change, oil peak, and food production and the role of science in helping delimit them as problematic.

Mainstreaming sustainability
Sustainability and Mitigation, Adaptation and Resilience, as individual and social concerns, and their role in transformation.

Communicating sustainability
Human well-being, Environmental Justice, Environmental Policy and the practicalities of Sustainability in Scotland.

Sustainable development in practice
Community Empowerment associated with Land Reform. Energy Production and Food Production in Tayside.

Ethics and sustainability policy
Active citizenship and globalisation.

Innovating locally, transforming globally
Transformations required to embrace Sustainability.

Active relationship for sustainable futures
Thinking globally, acting locally.

Brief description

How lifestyle can affect physical and mental well-being. Reflect on your own lifestyle choices and how to incorporate good health behaviours into your life.

Module content:

  • Sleep and stress
    The impact of sleep and stress on health and performance. Completion of sleep diaries and questionnaires related to sleep patterns and stress.
     
  • Physical activity
    Current physical activity recommendations, components of physical fitness.
     
  • Physical inactivity
    Understanding why people are inactive. The link between physical inactivity, obesity and type 2 diabetes.
     
  • Physical activity and mental well-being
    The effects of physical activity on mental well-being.
     
  • The effect of carbohydrate consumption and exercise on blood glucose
    Measurement and recording of blood glucose in response to the carbohydrate ingestion and exercise.
     
  • Simple health and fitness testing
    Measurement and recording of data. Tests will include blood pressure, strength, endurance and flexibility. Data will be compared with normative values for these tests.

Brief description

Develop critical thinking skills that form the basis for progression across the academic disciplines of the university. Learn how to recognise, construct, evaluate, criticise and defend different forms of argument.

Module content:

•    Potential 'timeless' debates 
Debates delivered by internal and external experts on: e.g. existence of God; privacy and civil society; private property; money as source of 'evil'; nature/nurture; free speech; pornography; capital punishment; prostitution; animal experimentation; meaning of justice; abortion; affirmative action; just war; trade union power; good life/good political community; human nature; monarchy; value of democracy; meaning of equality; citizenship rights.

•    Potential 'timely' debates
Debates delivered by internal and external experts on: eg, Scottish independence, academic freedom; drug legalisation; drug use in sport; immigration; free health care; war on terror; EU membership; euthanasia; progressive taxation; race and gender discrimination; gay marriage; human rights; politics/sport; global warming; internet censorship; nuclear power; education league tables; nuclear weapons; GM agriculture; religion; cloning; fair trade; value of contemporary culture.

•    Critical thinking seminars
Follow-up discursive discipline specific seminar sessions led by teaching staff on topics covered in formal debates. Learn to identify types of argument presented, evaluate perspectives and to reflect upon their own reasoning processes and value assumptions. The debates and seminars facilitate a foundation for the acquisition of graduate attributes.

•    WEB CT Wiki discussion forum
Work in small groups to write a short 800 word indicative "Thinking Summary" online Wiki of the arguments presented in each debate. These summaries will be constructed by each designated Thinking Group of three students using the Wiki facility on Blackboard which will facilitate further discussion on the moderated WEB CT discussion forum.

Brief description

The social, managerial, economic, political, and technical challenges and opportunities associated with emerging renewable energy innovation, production, supply and consumption.

Module content:

•    Renewable energy non-technical challenges and opportunities
Social and political challenges and opportunities of renewable energy production supply and consumption. Economic and environmental challenges of renewable energy production supply and consumption. Strategic and managerial challenges of renewable energy production supply and consumption.


•    Renewable energy technological challenges and opportunities
Geotechnical, Geophysical and Hydrographic information; Knowledge of sources of hydrographic information and interpretation of published charts. Forces on structures; Appreciation of the various forces acting on marine structures. Technical limitations and challenges of energy distribution systems and energy storage. Current technological development trend, collaborative innovation in renewable energy.

Brief description

An understanding of the concepts of tolerance, and the importance of making sound ethical decisions. Develop the qualities, characteristics and skills to meet the aspiration for Abertay graduates to become global and active citizens. 

Module content:

•    Introduction to equality and ethics legislation 

•    Diversity competence and moral/ethical reasoning 
Inclusiveness, equal opportunities, positive action, reasonable adjustment.

•    Attributes for the workplace and for global citizenship.

•    Reflective practice 
Application of models of reflective practice.

•    Contemporary issues

Brief description

Learn how to adjust language to suit context. Analyse a range of linguistic issues, including “proper English”, how language can be used to create moral panics, and the ethics of communication.

Module content:

•    “Good English”
The role of standardisation, dialect and idiolect − how we choose language to reflect our identities and our role in a speech or discourse community.

Language and influence
How the media constructs narratives to persuade or inform the audience (and how to tell the difference).

Creating a narrative across genres
The conventions, freedoms and limitations of different forms; using these forms in new ways.

Narrative changes over time
How authors reinvent old stories to reflect current concerns.

Technical writing
The use and manipulation of data; hearing the author's voice; critiquing "bad science".

The ethics of communication
 (Electronic) media and ownership, attribution and theft.

Brief description

“Personal” digital safety to make computer security fun, practical and eye-opening.  Learn the base knowledge that will continue to be relevant to future generations of devices.

Module content:

•    Current state of computer security
An overview including legal aspects.

•    Cyber-attacks, vulnerabilities and threats
Malware, Network attacks (denial of service, packet sniffing etc.), bots and rootkits. How the bad guys can obtain your password.

•    Information leakage
Recovery and forensics recovering deleted or corrupted files. What your browser knows about you. Web browser forensics.

•    Securing networks, accounts and devices
Defence against malware, honeypots, Secure protocols, intrusion detection, Password security, Mobile device security.

•    Human aspects of cyber security 
The Psychology of Hackers, Social Engineering, identity theft, Usability vs security.

•    Breaking the code
An introduction to cryptography, Encryption and Decryption, public and private keys, the key exchange problem.

•    History of cryptography 
The Caesar cipher, polyalphabetic ciphers, the Playfair cipher, the role of Enigma and the Bletchley Park cryptographers in WWII.

•    Computers and Crypto Diffie-Hellman and RSA encryption
Phil Zimmerman and “Pretty Good Protection". Quantum Cryptography – Provably unbreakable information hiding. Mathematical Underpinnings – Large prime numbers and why they matter.

•    Steganography
 A picture's worth a thousand words when you're hiding the wood in the trees.

•    The law, society and cryptography 
Why you can be imprisoned for forgetting your password. The Civil Liberties Arguments for and against strong-crypto. International perspectives on information hiding, information freedom, the right to privacy and the conflicts between these. Are unbreakable cyphers an unqualified “good thing”?

Brief description

Develop perspectives on the key challenges faced by humankind such as environmental change, pollution, food security, energy provision, conflicts, terrorism, emerging diseases, and changing demographics. Understand the overwhelming complexity of the problems and the need for interdisciplinary approaches to create solutions.

Module content:

  • Interdisciplinary research
    Introductory lectures will discuss the definitions, methods, benefits, challenges, and drawbacks of disciplinary and interdisciplinary approaches and the role of public policy influencing research
     
  • Global challenges
    Challenges from different disciplines. Examples include: Climate Change: causes and impact; Serious Games: science and application of visualization and games; Global Security: valuing ecosystems: balancing policy, economics and environment; Contemporary Challenges to Healthy Living; Food Security: global threats and local needs; Energy Poverty: space travel.

Brief description

Design an activity to communicate and present scientific principles to primary school children. Learn about working as a group and how to communicate complex ideas.

Module content:

Developing a science communication activity
Target audience, sources of information to identify suitable activities (CfE documentation etc.), health and safety, issues around working with specific groups, accessibility, ethics, costing and sustainability.

The landscape of engagement and current practice
Types of public engagement activities, target audiences, funding, role of learned societies, universities and other bodies. Public engagement in Dundee and Tayside.

Brief description

Work in a team to develop game design concepts for serious applications. Gain the knowledge, processes and techniques of game design and study examples of serious games developed to benefit society.

Module content:

•    Overview of Games
A brief history of games, game art and gamification.

•    Games for change
Understanding how games can benefit society.

•    Game mechanics
Deconstructing core components of popular game genres.

•    Gameplay constructs
What is gameplay and how is this broken down and communicated within the game design.

•    The game design process
Conceptualisation, iteration, phases of workflow.

•    Game design theory and practice
Identifying the elements within effective design and how they are implemented.

•    Documenting the design interactive
Oriented design, technical design, capturing requirements.

•    Business models
Exploring methods that can be used to generate revenue within the game design.

Brief description

Develop the knowledge and awareness required to make good career decisions and the skills and confidence to successfully navigate each stage of the recruitment process for graduate jobs.

Module content:

  • Developing self-awareness
    Profiling of personal strengths, values and priorities in relation to career choice.
     
  • Developing opportunity awareness
    Generating career ideas based on your personal profile; Exploring the range of graduate opportunities within job sectors of interest; Reviewing occupations that are directly related to your own subject discipline.
     
  • Developing a career action plan
    Matching your personal profile with best fit opportunities in the job market; Creating a timeline of actions to improve your prospects of meeting your aim.
  • Developing job seeking skills
    Sourcing suitable job opportunities - both advertised and unadvertised; Creating a professional image online; Identifying the skills and qualities employers look for in graduates; Learning how to produce targeted applications for specific job roles; Practising the presentation of your strengths and motivations in face to face selection activities.

Brief description

Learn about natural disaster such as landslides and flooding, structural disasters such as the Tay Rail Bridge and the system of critical infrastructure (such as road, rail, air and shipping transport networks, power grid, gas and water networks, health system) that constitute the backbone of modern societies.

Module content:

•    Overview of the scope and the content of concept of critical infrastructure failure during natural disasters and resilience against such failures
The consequences of geophysical, hydrological and meteorological disasters on critical infrastructure and critical infrastructure protection capabilities against natural disasters. Interdependencies of critical infrastructures during large disasters, presents a brief review of current research being done in this field, and presents a methodology to address interdependencies.


•    The identification of the vulnerabilities of the critical systems
The critical systems upon which modern society, economy, and polity depend. The identification of the vulnerabilities of these systems threats that might exploit these vulnerabilities. The effort to develop techniques to mitigate these vulnerabilities through improved design.


•     Flooding in Scotland
General overview of fluvial, pluvial and coastal flooding, the structural, economic and societal impact and responses to flooding. Resources will include historical examples, current policies and information (including SEPA flood maps). Case study (with virtual/actual field visit?) the Perth Floods of 1990 and 1993 and the Perth flood defence scheme*


•    Landslide origins, types and mitigations
General overview what landslides are, why they happen and what can be done to prevent them.


•    Structural failure
An example such as why the Tay Bridge failed and what it meant for the Forth Rail Bridge.


•    Reports and investigations
The role of reports in accident and disaster investigations in creating informative reports; case studies of accidents, disasters, learning from history, learning from case studies, learning from common law

Brief description

Introduction to the skills and knowledge needed to launch a small business successfully. This module will define and help you acquire the personal and professional skills needed to develop a professional career and/or to succeed as entrepreneurs in Small and Medium sized Enterprises (SMEs).

Module content:

  • Understanding entrepreneurship.
     
  • Generating successful business ideas.
     
  • Environmental scanning.
     
  • Developing a credible business plan that includes evaluating business ideas.
     
  • Presenting the business idea.

Brief description

An understanding of some of the processes involved in food production. Discuss common misconceptions and ideas which present the food and nutritional industries in a bad light.


Module content:

•    Student led investigations
Student led investigations of the different sectors within the food and drink industry including: prebiotics – and the controversy surrounding the term; if barbequing is a healthy cooking method; and exposing the celebrity chef - common Myths about cooking.


•    Consumerism
Does the food industry listen to us? Understanding consumer and sensory science to better understand why you buy the products you buy.  How food/public health is reported by the media? The French paradox / Mediterranean diet.


•    Future of food
Ethical food production and the future of foods, and what’s waste got to do with it?


•    Debunking myths
Debunking food myths, more science than science fiction in our food today, like the science behind getting sauce out of a bottle and what to drink – Whisky or Beer?


•    Facts from fiction
Finding facts from fiction, investigating the three-second rule – should I eat things that have fallen on the floor? What’s so super about super-foods? Fat or sugar: Which is worse?

Brief description

Learn how we approach and understand mental health, from historic, social, therapeutic, and individual perspectives. Explore questions such as ‘what is madness?’, ‘how does society position people with mental illness?’, and ‘how do we best respond to challenges to our mental health?’

Module content:

  • Historical and cultural perspective on mental illness
    How do we ‘think’ about mental health, and mental ill health?
     
  • Diagnosis and the anti-psychiatry movement
    Who holds the power to decide what is normal in terms of psychological well-being and behaviour?
     
  • Gender, culture and mental health
    How gendered cultural expectations and representations influence how we respond to mental health issues.
     
  • Media representations
    The impact of film and literature on attitudes and understandings of mental health.
     
  • Resilience, treatment and recovery
    Common mental health problems in the UK, treatment and management, and frameworks for enhancing well-being and resilience.

Brief description

An introduction to the wide range of disciplines in forensic investigation. Learn how crimes are investigated from the moment of reporting through to the presentation of the evidence in court. A hypothetical case study provides an over-arching framework in which to explore the critical aspects of forensic investigations. It involves not only physical and electronic evidence, but also statements from witnesses, suspects and victims which requires cross discipline collaboration of professionals.


Module content:

Crime scene investigation
How a crime scene is examined in the context of incomplete contextual information and to avoid loss or contamination of evidence and the maximising of the value of evidential material.

Media involvement
Positive and negative effects of the media/public interest in the crime.

Forensic biology
Examination and evidential value of body fluids, DNA, hairs and fibres.

Forensic chemistry
Analysis for drugs, toxicological analysis, firearms, explosives, and trace evidence.

Digital sources
Evidence from CCT, mobile phones, computer hardware, on−line behaviour.

Forensic reasoning and practice
An introduction to forensic problem solving, thinking styles, case assessment and interpretation.

Psychology of witnesses and suspects
False confessions, offender profiling, effects and avoidance of cognitive bias in forensic science through process design.

Year 2 Core Modules

You must study and pass all five core modules

Brief description

Build on your knowledge of programming taught in earlier modules (e.g. arrays, structures, simple collections). Gain an introduction to the standard data structures and algorithms that form the core of algorithmic thought in computer science and to the idea of reasoning about the behaviour and performance of a computer program.

Indicative content:

  • Reasoning about performance: The idea of an algorithm, time and space complexity, abstract data types.
  • Basic data structures: Linked lists, stacks, queues, hash tables.
  • Sorting and searching: Exhaustive and binary search, common sorting algorithms.
  • Trees: Simple trees, tree search algorithms, tree representations (XML, JSON).
  • Graphs: Simple and directed graphs, graph algorithms.

Brief description

Dynamic web applications, through client-side and server side internet development on a full-stack platform.

Indicative content:

  • Web standards: Application of HTML5 and CSS to develop responsive designs.
  • Client-side technologies: Implementation of JavaScript, libraries, and frameworks to create effective user interfaces within an appropriate development practice and methodology.
  • Design techniques: Appropriate techniques for dynamic web applications.
  • Data persistence: The use of relevant data persistence and consideration of appropriate use.
  • Server-side scripting technologies: Using server-side technologies to provide functionality. Consideration of the processes involved, and the benefits/drawbacks of processing on the server.
  • Security and legal issues: Consider legal and security issues including privacy, transparency, data protection, GDPR, authorisation and validation.
  • Practical aspects of security: Appropriate use of network protocols, secure programming, and testing strategies.

Brief description

The design and implementation of object-oriented software and relational databases. In both contexts,  review existing designs, develop your own to meet stated requirements, critically evaluate them and use them to create example implementations.

Indicative content:

  • Entity relationship (ER) modelling: Identifying entities; 1-1, 1-many and many-many relationships; design notation; ER in OO software and database design.
  • Relational database design: Using primary and foreign keys to realise 1-1 and 1-many relationships; link tables for many-many relationships; designing to meet application data requirements; normalisation.
  • SQL: SQL as a programming language; basic relational algebra; expressing unions and joins; selecting, extracting, editing and inserting data; writing SQL to meet functional requirements.
  • OO software and SQL: Including SQL into OO software; integrating OO software and database designs; realising designs in code.
  • Development methodologies: The role of a methodology; review different methodologies such as waterfall, RAD, agile, TDD; appraise the role of design within different methodologies.

Brief description

Build on Data Structures and Algorithms 1.Gain an introduction to parallel programming on shared-memory and GPU architecture, and the design techniques underpinning parallel applications. Use a range of case studies drawn from typical real-world applications.

Indicative content:

  • Parallel programming: Why to parallelise, Amdahl’s law, high-level approaches to parallelisation, parallel design.
  • Low-level programming with threads: Starting and joining threads, sharing data safely, mutual exclusion, synchronisation objects, lock-free.
  • High-level parallel programming: Task-based parallelism, data-parallel problems, exploiting locality.
  • Instruction-level parallelism: SIMD instructions, automatic vectorisation.
  • GPGPU: GPU architectures, appropriate algorithms for GPUs, GPU profiling.
  • Application case studies: Awareness of common sorting, numerical, image processing and searching and optimisation algorithms (and associated data structures) and a recognition as to which are relevant for chosen field of study e.g. Spatial trees, pathfinding and AI, database indexing, password hashing, simulation, file carving] and which can benefit from parallelisation.
  • Parrallel Patterns: Design patterns for parallel and concurrent programming. Awareness of common sorting, numerical, image processing and searching and optimization algorithms, and how they can benefit from parallelisation.

Brief description

Generic concepts for the optimisation of interactions between a user and computing systems and service, and how these interactions can be evaluated. Learn about research methods, quantitative and qualitative data analysis, and ethics in the data gathering process, as well as interface design. Explore aspects of usability and accessibility.

Indicative content:

  • Designing Experiments: Creating and building small experiments that relate to aspects of computing.
  • Usability and Accessibility: Developing interfaces that are usable and accessible under consideration of platform.
  • Professional and Ethical Issues: Consideration of issues that affect professionalism and ethical procedures in computing industries.
  • Data Analysis and Evaluation: Quantitative and qualitative data analysis methods.

Years 1 and 2 Elective Modules

You must study and pass one elective module of your choosing

Brief description

Introduction of the concept of smart cities - hard infrastructure, social capital including local skills and community institutions, and digital technologies to fuel sustainable economic development and provide an attractive environment for all.

Module content:

  • Social impacts

There is an overall need for theoretical and methodological plurality in how we assess the impact and value of future cities in terms for individual and societal well−being. Gaps in our understanding relate to the complex ways individuals and groups engage with built and natural settings, the cultural goods and consequent benefits that may arise and the inequalities associated with these cultural benefits.

  • Security

Different types of cyber-attacks that could be launched against a Smart City. Impact of cyber-attacks. Approaches to securing the smart grid and critical infrastructure, i.e. improving cyber resilience.

  • Sustainable urban food production

Includes the long established allotments movement to large-scale projects based on sustainability throughout the food chain. Urban food production includes the long established allotments movement. The demand for urban growing also responds to the densification and intensification of living areas, due to population rise, migration and demographic aging with lower housing and ‘garden’ space standards placing greater importance on collective production.

  • Energy, waste and water

At present, water and wastewater facilities are often the largest and most energy intensive responsibilities owned and operated by local governments, representing up to 35% of municipal energy use. Future cities will need to utilise more sustainable methods of water and wastewater management and renewable energy production.

  • Digital technologies

​Digital technologies will play a major role in creating sustainable and resilient cities offering a vehicle for more inclusive decision−making process and promoting dialog amongst architects, urban planners, the public and technologists.

Brief description

Develop a range of skills, knowledge and techniques within the natural, technological and social sciences relevant to the study of environmental sustainability and life in the twenty-first century. Understand the critical issues that confront humanity and begin to discern appropriate responses.

Module content:

The challenge of sustainable development
Problems associated with life in the 21st Century and the relationship to scientific provisionalism and uncertainty.

The genesis of sustainable development concept
Developments associated with the Club of Rome are outlined while Limits to Growth and the Tragedy of the Commons.

Evolution of sustainable development
The Reo Summit and Suitability, and Policy Developments thereof.

Scientific inquiry and sustainable development
Controversial issues like climate change, oil peak, and food production and the role of science in helping delimit them as problematic.

Mainstreaming sustainability
Sustainability and Mitigation, Adaptation and Resilience, as individual and social concerns, and their role in transformation.

Communicating sustainability
Human well-being, Environmental Justice, Environmental Policy and the practicalities of Sustainability in Scotland.

Sustainable development in practice
Community Empowerment associated with Land Reform. Energy Production and Food Production in Tayside.

Ethics and sustainability policy
Active citizenship and globalisation.

Innovating locally, transforming globally
Transformations required to embrace Sustainability.

Active relationship for sustainable futures
Thinking globally, acting locally.

Brief description

How lifestyle can effect physical and mental well-being. Reflect on your own lifestyle choices and how to incorporate good health behaviours into your life.

Module content:

  • Sleep and stress
    The impact of sleep and stress on health and performance. Completion of sleep diaries and questionnaires related to sleep patterns and stress.
     
  • Physical activity
    Current physical activity recommendations, components of physical fitness.
     
  • Physical inactivity
    Understanding why people are inactive. The link between physical inactivity, obesity and type 2 diabetes.
     
  • Physical activity and mental well-being
    The effects of physical activity on mental well-being.
     
  • The effect of carbohydrate consumption and exercise on blood glucose
    Measurement and recording of blood glucose in response to the carbohydrate ingestion and exercise.
     
  • Simple health and fitness testing
    Measurement and recording of data. Tests will include blood pressure, strength, endurance and flexibility. Data will be compared with normative values for these tests.

Brief description

Develop critical thinking skills that form the basis for progression across the academic disciplines of the university. Learn how to recognise, construct, evaluate, criticise and defend different forms of argument.


Module content:

•    Potential 'timeless' debates 
Debates delivered by internal and external experts on: e.g. existence of God; privacy and civil society; private property; money as source of 'evil'; nature/nurture; free speech; pornography; capital punishment; prostitution; animal experimentation; meaning of justice; abortion; affirmative action; just war; trade union power; good life/good political community; human nature; monarchy; value of democracy; meaning of equality; citizenship rights.

•    Potential 'timely' debates
Debates delivered by internal and external experts on: eg, Scottish independence, academic freedom; drug legalisation; drug use in sport; immigration; free health care; war on terror; EU membership; euthanasia; progressive taxation; race and gender discrimination; gay marriage; human rights; politics/sport; global warming; internet censorship; nuclear power; education league tables; nuclear weapons; GM agriculture; religion; cloning; fair trade; value of contemporary culture.

•    Critical thinking seminars
Follow-up discursive discipline specific seminar sessions led by teaching staff on topics covered in formal debates. Learn to identify types of argument presented, evaluate perspectives and to reflect upon their own reasoning processes and value assumptions. The debates and seminars facilitate a foundation for the acquisition of graduate attributes.

•    WEB CT Wiki discussion forum
Work in small groups to write a short 800 word indicative "Thinking Summary" online Wiki of the arguments presented in each debate. These summaries will be constructed by each designated Thinking Group of three students using the Wiki facility on Blackboard which will facilitate further discussion on the moderated WEB CT discussion forum.

Brief description

The social, managerial, economic, political, and technical challenges and opportunities associated with emerging renewable energy innovation, production, supply and consumption.


Module content:

•    Renewable energy non-technical challenges and opportunities
Social and political challenges and opportunities of renewable energy production supply and consumption. Economic and environmental challenges of renewable energy production supply and consumption. Strategic and managerial challenges of renewable energy production supply and consumption.


•    Renewable energy technological challenges and opportunities
Geotechnical, Geophysical and Hydrographic information; Knowledge of sources of hydrographic information and interpretation of published charts. Forces on structures; Appreciation of the various forces acting on marine structures. Technical limitations and challenges of energy distribution systems and energy storage. Current technological development trend, collaborative innovation in renewable energy.

Brief description

An understanding of the concepts of tolerance, and the importance of making sound ethical decisions. Develop the qualities, characteristics and skills to meet the aspiration for Abertay graduates to become global and active citizens. 

Module content:

•    Introduction to equality and ethics legislation 

•    Diversity competence and moral/ethical reasoning 
Inclusiveness, equal opportunities, positive action, reasonable adjustment.

•    Attributes for the workplace and for global citizenship.

•    Reflective practice 
Application of models of reflective practice.

•    Contemporary issues

Brief description

Learn how to adjust language to suit context. Analyse a range of linguistic issues, including “proper English”, how language can be used to create moral panics, and the ethics of communication.

Module content:

•    “Good English”
The role of standardisation, dialect and idiolect − how we choose language to reflect our identities and our role in a speech or discourse community.

Language and influence
How the media constructs narratives to persuade or inform the audience (and how to tell the difference).

Creating a narrative across genres
The conventions, freedoms and limitations of different forms; using these forms in new ways.

Narrative changes over time
How authors reinvent old stories to reflect current concerns.

Technical writing
The use and manipulation of data; hearing the author's voice; critiquing "bad science".

The ethics of communication
 (Electronic) media and ownership, attribution and theft.

Brief description

“Personal” digital safety to make computer security fun, practical and eye-opening.  Learn the base knowledge that will continue to be relevant to future generations of devices.

Module content:

•    Current state of computer security
An overview including legal aspects.

•    Cyber-attacks, vulnerabilities and threats
Malware, Network attacks (denial of service, packet sniffing etc.), bots and rootkits. How the bad guys can obtain your password.

•    Information leakage
Recovery and forensics recovering deleted or corrupted files. What your browser knows about you. Web browser forensics.

•    Securing networks, accounts and devices
Defence against malware, honeypots, Secure protocols, intrusion detection, Password security, Mobile device security.

•    Human aspects of cyber security 
The Psychology of Hackers, Social Engineering, identity theft, Usability vs security.

•    Breaking the code
An introduction to cryptography, Encryption and Decryption, public and private keys, the key exchange problem.

•    History of cryptography 
The Caesar cipher, polyalphabetic ciphers, the Playfair cipher, the role of Enigma and the Bletchley Park cryptographers in WWII.

•    Computers and Crypto Diffie-Hellman and RSA encryption
Phil Zimmerman and “Pretty Good Protection". Quantum Cryptography – Provably unbreakable information hiding. Mathematical Underpinnings – Large prime numbers and why they matter.

•    Steganography
 A picture's worth a thousand words when you're hiding the wood in the trees.

•    The law, society and cryptography 
Why you can be imprisoned for forgetting your password. The Civil Liberties Arguments for and against strong-crypto. International perspectives on information hiding, information freedom, the right to privacy and the conflicts between these. Are unbreakable cyphers an unqualified “good thing”?

Brief description

Develop perspectives on the key challenges faced by humankind such as environmental change, pollution, food security, energy provision, conflicts, terrorism, emerging diseases, and changing demographics. Understand the overwhelming complexity of the problems and the need for interdisciplinary approaches to create solutions.

Module content:

  • Interdisciplinary research
    Introductory lectures will discuss the definitions, methods, benefits, challenges, and drawbacks of disciplinary and interdisciplinary approaches and the role of public policy influencing research
     
  • Global challenges
    Challenges from different disciplines. Examples include: Climate Change: causes and impact; Serious Games: science and application of visualization and games; Global Security: valuing ecosystems: balancing policy, economics and environment; Contemporary Challenges to Healthy Living; Food Security: global threats and local needs; Energy Poverty: space travel.

Brief description

Design an activity to communicate and present scientific principles to primary school children. Learn about working as a group and how to communicate complex ideas.

Module content:

Developing a science communication activity
Target audience, sources of information to identify suitable activities (CfE documentation etc.), health and safety, issues around working with specific groups, accessibility, ethics, costing and sustainability.

The landscape of engagement and current practice
Types of public engagement activities, target audiences, funding, role of learned societies, universities and other bodies. Public engagement in Dundee and Tayside.

Brief description

Work in a team to develop game design concepts for serious applications. Gain the knowledge, processes and techniques of game design and study examples of serious games developed to benefit society.

Module content:

•    Overview of Games
A brief history of games, game art and gamification.

•    Games for change
Understanding how games can benefit society.

•    Game mechanics
Deconstructing core components of popular game genres.

•    Gameplay constructs
What is gameplay and how is this broken down and communicated within the game design.

•    The game design process
Conceptualisation, iteration, phases of workflow.

•    Game design theory and practice
Identifying the elements within effective design and how they are implemented.

•    Documenting the design interactive
Oriented design, technical design, capturing requirements.

•    Business models
Exploring methods that can be used to generate revenue within the game design.

Brief description

Develop the knowledge and awareness required to make good career decisions and the skills and confidence to successfully navigate each stage of the recruitment process for graduate jobs.

Module content:

  • Developing self-awareness
    Profiling of personal strengths, values and priorities in relation to career choice.
     
  • Developing opportunity awareness
    Generating career ideas based on your personal profile; Exploring the range of graduate opportunities within job sectors of interest; Reviewing occupations that are directly related to your own subject discipline.
     
  • Developing a career action plan
    Matching your personal profile with best fit opportunities in the job market; Creating a timeline of actions to improve your prospects of meeting your aim.
  • Developing job seeking skills
    Sourcing suitable job opportunities - both advertised and unadvertised; Creating a professional image online; Identifying the skills and qualities employers look for in graduates; Learning how to produce targeted applications for specific job roles; Practising the presentation of your strengths and motivations in face to face selection activities.

Brief description

Learn about natural disaster such as landslides and flooding, structural disasters such as the Tay Rail Bridge and the system of critical infrastructure (such as road, rail, air and shipping transport networks, power grid, gas and water networks, health system) that constitute the backbone of modern societies.

Module content:

•    Overview of the scope and the content of concept of critical infrastructure failure during natural disasters and resilience against such failures
The consequences of geophysical, hydrological and meteorological disasters on critical infrastructure and critical infrastructure protection capabilities against natural disasters. Interdependencies of critical infrastructures during large disasters, presents a brief review of current research being done in this field, and presents a methodology to address interdependencies.


•    The identification of the vulnerabilities of the critical systems
The critical systems upon which modern society, economy, and polity depend. The identification of the vulnerabilities of these systems threats that might exploit these vulnerabilities. The effort to develop techniques to mitigate these vulnerabilities through improved design.


•     Flooding in Scotland
General overview of fluvial, pluvial and coastal flooding, the structural, economic and societal impact and responses to flooding. Resources will include historical examples, current policies and information (including SEPA flood maps). Case study (with virtual/actual field visit?) the Perth Floods of 1990 and 1993 and the Perth flood defence scheme*


•    Landslide origins, types and mitigations
General overview what landslides are, why they happen and what can be done to prevent them.


•    Structural failure
An example such as why the Tay Bridge failed and what it meant for the Forth Rail Bridge.


•    Reports and investigations
The role of reports in accident and disaster investigations in creating informative reports; case studies of accidents, disasters, learning from history, learning from case studies, learning from common law

Brief description

Introduction to the skills and knowledge needed to launch a small business successfully. This module will define and help you acquire the personal and professional skills needed to develop a professional career and/or to succeed as entrepreneurs in Small and Medium sized Enterprises (SMEs).

Module content:

  • Understanding entrepreneurship.
     
  • Generating successful business ideas.
     
  • Environmental scanning.
     
  • Developing a credible business plan that includes evaluating business ideas.
     
  • Presenting the business idea.

Brief description

An understanding of some of the processes involved in food production. Discuss common misconceptions and ideas which present the food and nutritional industries in a bad light.


Module content:

•    Student led investigations
Student led investigations of the different sectors within the food and drink industry including: prebiotics – and the controversy surrounding the term; if barbequing is a healthy cooking method; and exposing the celebrity chef - common Myths about cooking.


•    Consumerism
Does the food industry listen to us? Understanding consumer and sensory science to better understand why you buy the products you buy.  How food/public health is reported by the media? The French paradox / Mediterranean diet.


•    Future of food
Ethical food production and the future of foods, and what’s waste got to do with it?


•    Debunking myths
Debunking food myths, more science than science fiction in our food today, like the science behind getting sauce out of a bottle and what to drink – Whisky or Beer?


•    Facts from fiction
Finding facts from fiction, investigating the three-second rule – should I eat things that have fallen on the floor? What’s so super about super-foods? Fat or sugar: Which is worse?

Brief description

Learn how we approach and understand mental health, from historic, social, therapeutic, and individual perspectives. Explore questions such as ‘what is madness?’, ‘how does society position people with mental illness?’, and ‘how do we best respond to challenges to our mental health?’

Module content:

  • Historical and cultural perspective on mental illness
    How do we ‘think’ about mental health, and mental ill health?
     
  • Diagnosis and the anti-psychiatry movement
    Who holds the power to decide what is normal in terms of psychological well-being and behaviour?
     
  • Gender, culture and mental health
    How gendered cultural expectations and representations influence how we respond to mental health issues.
     
  • Media representations
    The impact of film and literature on attitudes and understandings of mental health.
     
  • Resilience, treatment and recovery
    Common mental health problems in the UK, treatment and management, and frameworks for enhancing well-being and resilience.

Brief description

An introduction to the wide range of disciplines in forensic investigation. Learn how crimes are investigated from the moment of reporting through to the presentation of the evidence in court. A hypothetical case study provides an over-arching framework in which to explore the critical aspects of forensic investigations. It involves not only physical and electronic evidence, but also statements from witnesses, suspects and victims which requires cross discipline collaboration of professionals.


Module content:

Crime scene investigation
How a crime scene is examined in the context of incomplete contextual information and to avoid loss or contamination of evidence and the maximising of the value of evidential material.

Media involvement
Positive and negative effects of the media/public interest in the crime.

Forensic biology
Examination and evidential value of body fluids, DNA, hairs and fibres.

Forensic chemistry
Analysis for drugs, toxicological analysis, firearms, explosives, and trace evidence.

Digital sources
Evidence from CCT, mobile phones, computer hardware, on−line behaviour.

Forensic reasoning and practice
An introduction to forensic problem solving, thinking styles, case assessment and interpretation.

Psychology of witnesses and suspects
False confessions, offender profiling, effects and avoidance of cognitive bias in forensic science through process design.

Year 3 Core Modules

You must study and pass all six core modules

Brief description

Understand web application development by learning to create a database back-end and related server-side scripts. Learrn key concepts in web application development such as security and the need to develop a professional approach.

Indicative content:

  • Dynamic Site Basics: Write sites in HTML5 supported by CSS with a framework (eg. Bootstrap). Design and implement a database to store data in relational form; use PHP to extract data and deliver to the web page. Use of Javascript.
  • Database Management Systems - Server-Side Scripting: Examine issues such as concurrency and distributed database, OO, SQL and NoSQL. Using techniques to develop a structured approach to scripting. Use of prepared statements to enforce secure scripting. Understanding of the MVC architecture and separation of Model, View Controller. Use of API and Web Services to deliver content from the database.
  • Web Application Architectures - Security: Explore the 3−tier architecture and techniques of ensuring the separation of these tiers. Management of sites to allow interface changes without affecting the processing or database. Running through the module is the idea of secure coding. Main threats to the security of dynamic web applications and their data. Implement countermeasures to security threats within the context of differing types of application. 
  • Databases: Appropriate use of the Relational database model to store data for dynamic web sites. Alternative models including NoSQL database model.
  • JSON: JavaScript Object Model - Use of JSON as a data description language. Using JSON to deliver data between applications and servers. XML as an alternative.
  • State Management within HTTP: Use of Cookies in web development. Sessions and session management. Client Management and Application Management within PHP. Examination of different models from other technologies.
  • Client-Side Scripting: Review of Javascript as a client side language. Use of frameworks such as JQuery and AngularJS. Extension to Javascript server side development.
  • AJAX – RIA: Use of AJAX to develop web pages. Single page Web Applications using AJAX (RIA). Especially building Mobile Web Apps.
  • Internet of Things: Basic architecture of node / sensor domain, database and application domain. Creation of big data; upload to servers. Interrogation of servers to get information on the mobile device.
  • Mobile Internet Sites: Creation of mobile internet sites. Inclusion of special features that make the mobile more appropriate especially location.

Brief description

Working within a team, learn project management concepts to create a project proposal in a professional manner. Present your work in a client pitch to a stakeholder. The project briefs are drawn from industry and/or research based problems. Expect to: engage fully in your team role, communicate effectively with project stakeholders, contribute to the planning of the project, develop artefacts or prototypes, write associated documentation, and create and present the client pitch.

Indicative content:

  • Research: Background, competitors, prior art, project benefits.
  • Project: Project management concepts, Agile, Scrum.
  • Activities: Activities, deliverables and products.
  • Managing: Managing time and resources.
  • Identifying: Identifying and managing risks.
  • Quality considerations: Professional standards and quality assurance.
  • Develop: Develop artefacts, prototypes.
  • Interacting: Interacting with clients and team members.

Brief description

Understand software development practices which can be used to to develop applications for a range of mobile devices. Develop and evaluate the techniques used to implement mobile applications.

Indicative content:

  • Background to Smart and Mobile Development: Challenges in developing for smart including mobile devices. Development strategies, emulators and development environments. Use of the application abstraction to allow easier development.
  • User Interfaces: Development of interfaces for user-interaction including UI controls (buttons, forms) and underlying hardware controls (key presses, touch screen). Basic control of a mobile device using the high user interface. Use of commands and forms to gain data from the client. Use of low level features to display data to the user. Use of key presses to control real-time application.
  • Storage: Consideration of storage requirements for mobile devices. Saving and retrieving local and remote storage. Overview of database design. Use of remote databases, and how to use server side databases in an internet application. Use of internet based scripting to generate server side text for the client.
  • Location awareness: Utilising the network location capabilities of mobile devices to develop feature rich applications.
  • Telephony and SMS: Understanding the telephony and SMS stack on the mobile device and the use of APIs required for their access and control.
  • Communication Networks: Using short and long distance networks for communication and understanding of the limitations and benefits of each.
  • Security: Consider the security implications of mobile and smart platforms, how these can be exploited and development considerations to improve resilience.
  • Performance: Methods for testing the functionality and performance of applications on mobile devices.
  • Mobile Web Application Development: Explore and evaluate a range of mobile solution options from response design, jQuery mobile, and Javascript based applications.

Brief description

Introduction to some of the many Artificial Intelligence techniques which are currently, or could in the near future, be used to enhance the development of intelligent game systems. 

Indicative content:

  • ‘Traditional’ AI: Rule Based Systems, Finite State Machines.
  • Academic AI Techniques: Fuzzy Logic and Fuzzy State Machines, Case Basde Reasoning, Genetic Algorithms, Reinforcement Learning, Probabilistic Techniques, Artificial Neural Networks, Clustering Algorithms.
  • Applications of AI: Combining AI techniques to produce A-life and Intelligent Agents in games.
  • Machine Learning: The ability of a machine to learn from its environment.
  • Mining: Knowledge discovery and the process of finding hidden patterns in data.
  • Big Data: The challenge of the 21st century is 'too much data and not enough analysis'. Explore the challenges and opportunities afforded by this phenomenon.
  • Intelligence on the Internet: Analyse the emergence of intelligent agents on the internet.

Brief description

Complete a team based development project or other technical investigation project, which was planned and initially developed in the module: Professional Project Planning and Prototyping.

Indicative content:

  • Orientation: Consolidation of project teams and target problem.
  • Project principles: Required development methodologies during product production.
  • Documentation: The importance and content of a requirements specification and related documentation.
  • Design: The role of design and redesign during project development.
  • Implementation: Implementation issues and approaches.
  • Quality and Standards: Testing and evaluation methods and execution.
  • Communication: Oral and written communication and demonstration of software product.
  • Project planning and team working: Planning the project, organising a team, supporting colleagues, devising weekly plans, keeping progress records.
  • Self−evaluation: Personal contribution to team progress, logbook.

Brief description

Gain understanding and experience in design/programming within a software engineering context.

Indicative content:​

  • Software engineering (SE): What is SE? Application to development process; application to programming practices.
  • SE Development methodologies: Agile development; Waterfall Model; Continuous delivery.
  • Source control: Strategies; tools; version control systems (git).
  • Code development practices: Design concepts: Coupling and Cohesion; Continuous integration/continuous delivery (CI/CD); Test-driven development (TDD).
  • Unified Modelling Language (UML): Use case diagrams; Sequence diagrams; Class diagrams; State-machine diagrams; Activity diagrams.
  • Patterns: Pattern catalogues; reviewing a pattern; strategy pattern; observer pattern and variants; pattern implementation.
  • Secure OO coding practices: Identifying coding vulnerabilities; types of exploits; protection through good programming practice.
  • Protecting against the user: Full input verification & validation; handling passwords and encryption.

Year 4 Core Modules

You must study and pass all five core modules

Brief description

Develop an understanding of enterprise systems engineering by learning to design and implement solutions. Critically appraise enterprise internet solutions involving scalability, customisation and security.

Indicative content:

  • Architecting Scalable Enterprise Applications: Examine concepts that are required to architect and maintain scalable enterprise applications.
  • API Security: Implementing and securing Application Programming Interfaces (API)
  • Ensuring High Availability for your Enterprise Applications: Examine the core concepts of High Availability and how it can be deployed to ensure that enterprise applications are protected from failures.
  • Load Balancing Enterprise Applications: Concepts that are required to deploy load balancing for enterprise applications.
  • Working with Big Data: The core concepts of Big Data and how it is being used and deployed in enterprise environments.
  • Securing Enterprise Applications: The concepts required to secure enterprise applications and how to protect the data that is being used by the applications.
  • Distributed Databases in an Enterprise Environment. 
  • Provisioning Enterprise Servers.

Brief description

Explore system programming and development and gain an understanding of the security implications of such systems.

Indicative content:

  • System Programming: C programming, compiler, linker and loader. Static and runtime analysis of binary files. System development kits, kernel headers and cross complier environments.
  • Hardware: ASIC, MCU, CPU, SOC, assembly, component security, pcb security, sniffing wire traffic, radio traffic, Types of communication (I2C, SPI, UART, RS232) and security challenges.
  • Operating systems: I/O Manager, Memory Manager, Scheduler, .s file, init file, boot loader, boot process, ROM, RAM, execution rings.
  • Kernels: Types of kernel, real time, unix, Windows, mac, linux, user space vs kernel space, shell, native applications, dll, registry/proc. Security landscape in user and kernel space.
  • Auditing and Debugging: User and kernel space debugging, Remote kernel debug setup, Analysis of precompiled binaries.
  • Loadable modules: Linker, stack and memory layout, Interrupts, IRQ table and priorities. Introduction to device drivers, Types of driver, lifecycle, portability. Security risks associated with loadable modules.
  • Cloud Platforms: Setup and use of cloud platforms such as AWS. Cloud platform utilisation fundamentals and business considerations.
  • Web Technologies: TCP/IP protocol with understanding of application protocols such as HTTP, FTP, SSH etc. Understand web server and common gateway interface (CGI).

Brief description

Undertake the practical and development work for a major, in-depth individual project in an aspect of your programme. Devise the idea for the project and proof of concept to support the specification of a well-researched project proposal document.in Term 1. Carry out and complete the main development work for the project in Term 2.

Indicative content:

  • Investigation, Research and Selection: Initial investigation of project topic, Background research of project topic and Selection of project topic.
  • Evaluation: Methods of evaluating a project.
  • Legal, Social, Professional and Ethical Issues: Consideration of legal, social, ethical and professional issues.
  • Proposal: Production of a project proposal.
  • Project Ffeasibility and Proof of Concept: Demonstrate feasibility of project.
  • Self-directed problem solving, Originality and Creativity.
  • Self-Motivation, Initiative and Insight.
  • Software Design Skills.
  • Recording, Reporting and Communication Skills.
  • Employability and professional development.

Brief description

Present as a dissertation a major, in-depth individual project in an aspect of your programme. Normally you will devise the project, drawing from current industry and/or research based problem areas. Present your work in a structured and coherent manner which allows for critical and insightful review and evaluation of the project and artefact produced. Write the dissertation in academic style appropriate to your domain of study.

Indicative content:

  • Introduction: Introduce the topic of the project and the problem area with and appropriate research question.
  • Investigate: Investigate previous work in the chosen project area and show how the work of the project relates to it.
  • Justify: Demonstrate a sound justification for the approach and methodology adopted.
  • Document: Document the output of the project with some originality.
  • Evaluate: Critically evaluate the output, using third party evaluation where appropriate, and recognise the strengths and limitations of the work.
  • Communicate: Communicate your work professionally in the required academic format/style. Demonstrate an ability for independent learning and linkage to future work and career aspirations.

Brief description

The theory, knowledge, skills and critical framework to understand the role of languages, compilers and virtual machines, particularly for OO languages but also in relation to other programming paradigms. Learn a compiler writing technology you can use to create your own languages and compilers for use in a workflow pipeline.

Indicative content:

  • Programming languages and paradigms: Imperative; procedural; object-oriented; functional; logic.
  • OO virtual machine operation: Processing; stack and heap memory management; type compatibility rules; type management; security.
  • Language specification: Formal syntax and informal semantics; Grammars; BNF and EBNF; derivation sequence; LL(1) specifications; the LL() condition.
  • Compiler architecture and organisation: General structure; functional components; data structures for inter-component communication; an OO architecture; scanner implementation using an FSM.
  • Recursive-descent (RD) compiling: RD primitives; RD recognisers; EBNF to code transformations; parser as scanner, semantic analysis and artefact generation driver; semantic analysis; scope and symbol tables; artefact generation strategies.

How the Course Works

 

Learning and Assessment

You’ll spend between 12 and 16 hours per week in lectures, tutorials and computing lab-based practical activities. Lectures are used to present the key concepts, theories and techniques throughout the course.

Tutorials and lab-based activities increase your understanding of the subject and allow you to develop your competence and confidence in technological and theoretical work.

During the course, you’ll also participate in team-based activities, including a group project in year 3 where you’ll specify, plan and implement a software product.

Throughout the programme, there’s a mixture of coursework, project, class test and closed-book examinations.

Approximately 20% of assessment is by examination.

Accreditation

Entry Requirements

Please note: All applicants must have a pass Maths - National 5 grade C or GCSE grade C/4.  National 5 Lifeskill Maths not accepted in lieu of Maths.

Please visit our Entry from College pages for suitable College courses.

Republic of Ireland applicants, click on the UK tabs and scroll down to find your Entry Requirements.

See information about studying and applying to Abertay for International students.

Qualification Type Grade Requirements Essential Subjects
Higher (standard entry) ABBB One of the following: Computer Science, Maths, Architectural Technology, Human Biology, Biology, Building Construction, Chemistry, Engineering Science, Environmental Science, Geography or Physics
Higher (minimum entry) We may make you an offer at the minimum entry grades if you meet the criteria. Find out if you're eligible for minimum entry (see below). BBB One of the following: Computer Science, Maths, Human Biology, Biology, Chemistry, Engineering Science, Environmental Science, Geography, Physics
A-Level BCC One of the following: Computer Science, Maths, Architectural Technology, Human Biology, Biology, Building Construction, Chemistry, Engineering Science, Environmental Science, Geography or Physics
Irish Highers H2H3H3H3 One of the following: Computer Science, Maths, Architectural Technology, Human Biology, Biology, Building Construction, Chemistry, Engineering Science, Environmental Science, Geography or Physics
International Baccalaureate 29 Points One of the following: Computer Science, Maths, Architectural Technology, Human Biology, Biology, Building Construction, Chemistry, Engineering Science, Environmental Science, Geography or Physics at S5 or H4
BTEC Extended Diploma DMM Creative Media Production, Electrical/Electronic Engineering, Engineering, IT
AHEAD Successful completion of the relevant stream of our AHEAD programme
SWAP ABB Access to Physical Sciences, Access to Engineering
Qualification Type Grade Requirements Essential Subjects
Advanced Higher ABB Computer Science
A-Level ABB Computer Science
BTEC Extended Diploma D*DD IT (Software Development)
HNC - Our Entry from College pages list approved HNC/HND courses
Qualification Grade Requirements Essential Subjects
HND - Our Entry from College pages list approved HND courses

We accept a wide range of qualifications from applicants from across the world. Please select your country from the searchable list below to view different qualification entry requirements. If you have different qualifications to those listed, please contact us using the form below.

This field is required
This field is required

Academic Requirements

Applicants will typically be required to achieve BCC at A-Level, to include any essential subject(s).

Applicants will typically be required to pass the International Baccalaureate (IB) Diploma with an overall score of 29 points, to include any essential subject(s) at S5 or H4.

English language: English B at S5 or H4 is accepted. For English A, no grade is specified. For alternative English language qualifications, please see below.

Applicants will typically require a High School GPA of 3.0, plus one of the following:

  • SAT (I) score of 1150
  • 3 AP Tests at grades 433
  • 3 SAT Subject Tests at 600
  • ACT Composite score of 26

A combination of AP/SAT II tests may be used, provided they are in different subjects.

Applicants will typically be required to pass the Caribbean Advanced Proficiency Examination (CAPE) with 6 units as follows: 1 unit at II, 3 units at III, 2 units at IV, to include any essential subject(s) at III.

Applicants will typically be required to pass the European Baccalaureate with an overall grade of 73%, to include any essential subject(s) at grade 7.

English language: English Language 1 at grade 6 or English Language 2 at grade 7 are accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Diplomë e Maturës Shtetëore with an overall grade of 8.0, to include any essential subject(s).

Applicants will typically be required to pass the Baccalauréat Technique / Commercial with an overall grade of 15, to include any essential subject(s).

Applicants will typically be required to pass the Baccalauréat de l'Enseignement Secondaire with an overall grade of 15, to include any essential subject(s).

Applicants with national school qualilfications will typically be required to pass the first year of a university degree in a relevant subject with an average grade of 13/20, to include any essential subject(s).

Applicants will typically be required to pass the Trayecto Técnico Profesional with an overall grade of 7.0, to include any essential subject(s).

Applicants will typically be required to pass the Título de Técnico Superior/Universitario with an overall grade of 7.0, to include any essential subject(s).

Applicants will typically be required to pass the Araratian Baccalaureate at Extended Level with grades BBC, to include any essential subjects.

Applicants will typically be required to pass the Certificate of Secondary General Education wih an average of 13 and the first year of a university degree in a relevant subject with an average grade of 66%, to include any essential subject(s).

Applicants will typically be required to pass the Year 12 Certificate plus ATAR rank of 80 or Overall Position of 9, to include any essential subject(s) at Year 12 with grade B, grade 3 or Sound Achievement.

Applicants will typically be required to pass the Reifeprüfung/Maturazeugnis with an overall grade of 2.5, to include any essential subject(s) at grade 2.

English language: English at grade 2 in the Reifeprüfung/Maturazeugnis is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Tam Orta Tahsil Hazzinda Aggestat with an average of 4, and the first year of a university degree in a relevant subject with an average grade of 68%, to include any essential subject(s).

Applicants will typically be required to pass the Shahadat Al-Thanawaya Al-Aama/General Secondary Education Certificate with an average of 60%, and the first year of a university degree or post-secondary diploma in a relevant subject with an average grade of 70% or 2.75 (on the 4 point scale), to include any essential subject(s).

Applicants will typically be required to pass the Intermediate/Higher Secondary School Certificate at an average of 2.5, and the first year of a university degree in a relevant subject with an average grade of 55% or B-, to include any essential subject(s) at 60% or grade B.

Applicants will typically be required to pass the Certificate of General Secondary Education at an average of 6, and the first year of a university degree in a relevant subject with an average grade of 6.5, to include any essential subject(s).

Applicants will typically be required to pass the Certificate d'Enseignement Secondaire Supérieur with an overall average of 65%, to include any essential subject(s) at 65%.

Applicants will typically be required to pass the Diploma van secundair onderwijs with an overall average of 65%, to include any essential subject(s) at 65%.

Applicants will typically be required to pass the Abschlusszeugnis der Oberstufe des Sekundarunterrichts with an overall average of 65%, to include any essential subject(s) at 65%.

Applicants will typically be required to pass the Diploma de Bachiller at 64%, and the first year of a university degree in a relevant subject with an average grade of 65%, to include any essential subject(s) at 70%.

Applicants will typically be required to pass the General Certificate of Secondary Education at an average of 4.5, and the first year of a university degree in a relevant subject with an average grade of 70%, to include any essential subject(s).

Applicants will typically be required to pass the Certificado de Conculsão de Segundo Grau with an average score of 8.2, to include any essential subject(s) at grade 8.0.

Applicants will typically be required to pass the Certificado de Conclusão de Ensino Médio with an average score of 8.2, to include any essential subject(s) at grade 8.0.

Applicants will typically be required to pass Brunei A Levels in 3 subjects at grades BCC, to include any essential subject(s).

Applicants will typically be required to pass the Diploma za Sredno Obrazonvanie with an average score of 4.75, to include any essential subject(s) at grade 5.

Applicants will typically be required to pass the Diploma of Upper Secondary Education at average of C, and the first year of a university degree in a relevant subject with an average grade of 67%, to include any essential subject(s) at 65%.

Applicants will typically be required to pass the Baccalaureat or Baccalaureat Technique at an overall grade of 13, to include any essential subject(s) at grade 12.

Applicants will typically be required to complete the Secondary School Diploma or Diplôme d'Études Collégiales with five grade 12 subjects at an average of 70%, to include any essential subject(s) at 65%.

Applicants will typically be required to pass the Licencia de Education at an average of 4.5, and the first year of a university degree in a relevant subject with an average grade of 5.0, to include any essential subject(s) at grade 5.

Applicants will typically be required to complete Senior Middle/High School Certificate/Diploma at an average of 77%, to include any essential subject(s) at 77%; and pass GAOKAO with 550 points (based on the 750 points scheme).

Applicants will typically be required to pass the Bachiller Academico at an average of 3.25, and the first year of a university degree or Tecnico Universitario in a relevant subject with an average grade of 3.5, to include any essential subject(s) at grade 3.

Applicants will typically be required to pass the Svjedodžba o Maturi with an overall grade of 3.6, to include any essential subject(s) at grade 3.

Applicants will typically be required to pass the Apolytírio Lykeíou with an overall grade of 17.5, to include any essential subject(s) at grade 17.

Applicants will typically be required to pass the Vysvědčení o maturitní zkoušce with an overall grade of 2.2, to include any essential subject(s) at grade 2.

Applicants will typically be required to complete the Studentereksamen (STX), including 3 Level A subjects an overall grade of 7, to include any essential subject(s) at grade 7.

English language: Studentereksamen English Level A or B at grade 7 is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Título de Bachiller at an average of 7.0, and the first year of a university degree in a relevant subject with an average grade of 14 / 65%, to include any essential subject(s) at 60%.

Applicants will typically be required to pass the Gumaasiumi lõputunnistus with an average score of 3.6, to include any essential subject(s) at grade 4; and pass 3 state examinations at a minimum of 60% (or 2 states examinations plus C1 Advanced English CAE or IELTS).

English language: 75% in the English state examination is accepted, or C1 Advanced English CAE or IELTS (overall score 6.0 with no band lower than 5.5). For alternative English language qualifications, please see below.

Applicants will typically be required to complete the Studentsprogv at an overall grade of 7, to include any essential subject(s) at Level A grade 7.

Applicants will typically be required to pass the Ylioppilastutkinto/Studentexamen at an overall grade 4.5, to include any essential subject(s) at grade 5.

English language: Advanced English at grade 5 within the Ylioppilastutkinto/Studentexamen is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Baccalauréat Général/Professionnel/Technologique at an overall grade 12.5, to include any essential subject(s) at grade 13.

English language. English at grade 14 in the Baccalauréat Général/Professionnel/Technologique is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Option Internationale du Baccalauréat at an overall grade 11.5, to include any essential subject(s) at grade 13.

English language. English at grade 13 in the Option Internationale du Baccalauréat is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the NECO in at least five subjects at an average of B/C, and the first year of a university degree in a relevant subject with an average grade of 60%/2.70, to include any essential subject(s) at 60%/2.70.

English language: English at C6 or higher in the NECO is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the WAEC in at least five subjects at an average of B/C, and the first year of a university degree in a relevant subject with an average grade of 60%/2.70, to include any essential subject(s) at 60%/2.70.

English language: English at C6 or higher in the WAEC is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Sashualo Skolis Atestati (Secondary School Certificate) at an average grade of 7, and the first year of a university degree in a relevant subject with an average grade of 70%, to include any essential subject(s).

Applicants will typically be required to pass the Shualo Specialuri Sastsavleblis Diplomi (Special School Leaving Diploma) at an average grade of 7, and the first year of a university degree in a relevant subject with an average grade of 70%, to include any essential subject(s).

Applicants will typically be required to pass the Abitur with an overall grade of 2.2, to include any essential subject(s) at grade 11.

English language: Abitur English at grade 10 is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the NECO in at least five subjects at an average of B/C, and the first year of a university degree in a relevant subject with an average grade of B/55%, to include any essential subject(s) at grade B/55%.

English language: English at C6 or higher in the NECO is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the WAEC in at least five subjects at an average of B/C, and the first year of a university degree in a relevant subject with an average grade of B/55%, to include any essential subject(s) at grade B/55%.

English language: English at C6 or higher in the WAEC is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Greek Apolytirion of Geniko Lykeio at grade 17.5 and 3 Pan-Hellenic exams at an average of 16.5, to include any essential subject(s) at grade 17.

Applicants will typically be required to pass the Hong Kong HKDSE at 3333 in 4 core subjects, with elective subjects at 433 (for 3 electives) or 44 (for 2 electives), to include any essential subject(s) at 3.

Applicants will typically be required to pass the Érettségi Bizonyítvány at an overall grade 4.2, with 2 higher subjects at grade 4, to include any essential subject(s).

Applicants will typically be required to pass the Stúdentspróf at an overall grade 6.5, to include any essential subject(s) at grade 6.

Applicants will typically be required to pass the Indian Senior School (Year 12) exam at an average of 65%, to include any essential subject(s) at 65%.

Applicants will typically be required to pass the Sekolah Menengah Kejuruan/Madrasah Aliyah (SMK / MA) at 78%, to include any essential subject(s).

Applicants will typically be required to pass the Post School Qualification Diploma 1 at 2.5, to include any essential subject(s).

Applicants from Ireland should check the UK Year 1 Entry tab for entry requirements with Irish Highers.

Applicants will typically be required to pass the Te'udat Bagrut or Bagrut with at least 2 subjects at level 5 and 1 subject at level 4 at an average of 65%, to include any essential subject(s) at Level 5 with 65%.

Applicants will typically be required to pass the Diploma di Esame di Stato at 75%, to include any essential subject(s) at grade 8 (on the 10 point scale) or grade 16 (on the 20 point scale).

Applicants will typically be required to pass the Upper Secondary School Leaving Certificate at grade 3.75, to include any essential subject(s) at grade 4.

Applicants will typically be required to pass the Certificate of Completed Secondary Education at an average of 3, and the first year of a university degree in a relevant subject with an average grade of 75% / 2.67, to include any essential subject(s).

Applicants will typically be required to pass the Kenya Certificate of Secondary Education (KCSE) at an average of B, and the first year of a university degree in a relevant subject with an average grade of 55%, to include any essential subject(s) at 55%.

Applicants will typically be required to pass the Certificate of Complete General Secondary Education at an average of 3, and the first year of a university degree in a relevant subject with an average grade of 3.6, to include any essential subject(s).

Applicants will typically be required to pass the Atestas par vispārējo vidējo izglītību with an average score of 7.5, to include 3 state exams at a minimum of 75%, to include any essential subject(s) at 70%.

English language: 80% in the English state exam is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Baccalauréat Libanais or Baccalauréat II with 14, to include any essential subject(s) at grade 12.

Applicants will typically be required to pass the Brandos Atestatas with an average score of 7.5 with a minimum of 75% in 3 state exams, to include any essential subject(s) at grade 8.

English language: 80% in the English state exam is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Diplôme de Fin d'Études Secondaires at an overall grade of 44, to include any essential subject(s) at grade 44.

Applicants will typically be required to pass the Certificate of Higher Secondary Education with 73%, to include any essential subject(s) at 73%.

Applicants will typically be required to pass the Ensino Secundário Complementar with grade 2.8, to include any essential subject(s) at grade 3.

Applicants will typically be required to pass the Cambridge Overseas Higher School Certificate (COHSC) with grades BCC, to include any essential subject(s) at grade C.

Applicants will typically be required to pass the Malawian School Certificate of Education at grade 5, and the first year of a university degree in a relevant subject with an average of 65%, to include any essential subject(s).

Applicants will typically be required to pass the Sijil Tinggi Persekolahan Malaysia (STPM) with a minimum of 3 subjects at BBC or 2.67 GPA, to include any essential subject(s) at grade B/3.

Applicants will typically be required to pass the Unified Examination Certificate (UEC) with 4 subjects at 75% / A2 B5 B5 B5, to include any essential subject(s) at grade 75%/B5.

Applicants will typically be required to pass the Matriculation Certificate Examination with grades BB at Advanced level and BCCC at Intermediate level, to include any essential subject(s) at Advanced level grade C.

Applicants will typically be required to pass the Diplomă de Bacalaureat with an overall grade of 7.0, to include any essential subject(s) at grade 7.

Applicants will typically be required to pass the Certificate of Secondary Education at 70%, and the first year of a university degree in a relevant subject with an average of 75%, to include any essential subject(s).

Applicants will typically be required to pass the Higher Secondary Education Certificate (HSC) with 68%, to include any essential subject(s) at 65%.

Applicants will typically be required to pass the Voorbereidend Wetenschappelijk Onderwijs (VWO) with an overall score of 7.0, to include any essential subject(s) at grade 7.

English language: English at grade 8 in HAVO is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the NECO in at least five subjects at an average of B/C, and the first year of a university degree in a relevant subject with an average grade of 3.0 or 55%, to include any essential subject(s) at grade 3.0 or 55%.

English language: English at C6 or higher in the NECO is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the WAEC in at least five subjects at an average of B/C, and the first year of a university degree in a relevant subject with an average grade of 3.0/55%, to include any essential subject(s) at grade 3.0/55%.

English language: English at C6 or higher in the WAEC is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Secondary School Leaving Diploma/Matura with an overall grade of 3.75, to include any essential subject(s) at grade 3.

Applicants will typically be required to pass the Vitnemål for Vidergaende Opplaering with an overall average of 3.8, to include any essential subject(s) at grade 4.

English language: English at grade 4 in the Vitnemål for Vidergaende Opplaering is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Higher Secondary School Certificate at an average of 60%, and the first year of a university degree in a relevant subject with an average grade of 64%/3.0, to include any essential subject(s) at 68%.

Applicants will typically be required to pass the Matura with an average score of 65%, to include 3 Advanced subjects at a minimum of 50%, to include any essential subject(s) at Advanced level with a score of 70%.

Applicants will typically be required to pass the Diploma/Certificado Nível Secundário de Educação with an overall grade of 15, to include any essential subject(s) at grade 16.

Applicants will typically be required to pass the Qatar Senior School Certificate (Shahadat Al-Thanawaya Al-Aama) at an average of 60%, and the first year of a university degree in a relevant subject with an average grade of 2.5/75%, to include any essential subject(s) at 2.5/75%.

Applicants will typically be required to pass the Diplomă de Bacalaureat with an overall grade of 7.5, to include any essential subject(s) at grade 8.

Applicants will typically be required to pass the Attestat o Srednem Obrzovanii (Certificate of Secondary Education) at an average of 4, and the first year of a university degree in a relevant subject with an average grade of 3.7, to include any essential subject(s).

Applicants will typically be required to pass the General Secondary Education Certificate (Tawjihiyah) with an average of 60%, and either the post-secondary diploma or first year of a university degree in a relevant subject with an average grade of 3.5/75%, to include any essential subject(s) at 75%.

Applicants will typically be required to pass Singapore GCE A-Levels with grades BCC, to include any essential subject(s).

Applicants will typically be required to pass the Vysvedčenie o maturitnej skúške at grade 2.2, to include any essential subject(s) at grade 2.

English language: English at B2 level at grade 2 in the Vysvedčenie o maturitnej skúške is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Maturitetno spričevalo at grade 3.8, to include any essential subject(s) at grade 4.

Applicants will typically be required to pass the National Senior Certificate (with Matriculation Endorsement) with 4 subjects at 6555, to include any essential subject(s).

Applicants will typically be required to pass the Título de Bachiller with an average score of 7.2, to include any essential subject(s) at grade 7.

Applicants will typically be required to pass the Sudan School Certificate with an average of 60%/C, and the first year of a university degree in a relevant subject with an average grade of 70%/B, to include any essential subject(s).

Applicants will typically be required to pass the Avgangsbetyg/Slutbetyg fran Gymnasieskola with an average score of 16.5, to include any essential subject(s) at level 5 grade B.

English language: English Level 5 at grade B or English Level 6 at grade C in the Avgangsbetyg/Slutbetyg fran Gymnasieskola is accepted. For alternative English language qualifications, please see below.

Applicants will typically be required to pass the Certificat de Maturité with an overall grade of 4.6, to include any essential subject(s) at grade 5.

Applicants will typically be required to pass Maturitätszeugnis with an overall grade of 4.6, to include any essential subject(s) at grade 5.

Applicants will typically be required to pass the Attestato Di Maturità with an overall grade of 4.6, to include any essential subject(s) at grade 5.

Applicants will typically be required to pass the Certificate of Complete General Secondary Education at an average of 3, and the first year of a university degree in a relevant subject with an average grade of 3.6, to include any essential subject(s).

Applicants will typically be required to complete the Certificate of Secondary Education/Maw 6 with an average of 75%/3.3, to include any essential subject(s) at grade 3; or complete the first year of a university degree in a relevant subject with an average of 2.5, to include any essential subject(s) at 2.5.

Applicants will typically be required to pass the High School Diploma at an average of 55%, and the first year of a university degree in a relevant subject with an average grade of 3.2 (on the 5 point scale) or 60 (on the 100 point scale), to include any essential subject(s).

Applicants will typically be required to pass the Certificate of Secondary Education at an average of 3, and the first year of a university degree in a relevant subject with an average grade of 3.7, to include any essential subject(s).

Applicants will typically be required to pass the Certificate of Complete General Secondary Education, and the first year of a university degree in a relevant subject with an average grade of 70% / 2.6 (on the 4 point scale) / 4.2 (on the 5 point scale), to include any essential subject(s).

Applicants will typically be required to pass the General Secondary Education Certificate Examination at 65%, and the first year of a university degree in a relevant subject with an average grade of 2.3, to include any essential subject(s) at grade 2.3.

Applicants will typically be required to pass the Diploma of Academic Lyceum at an average of 3, and the first year of a university degree in a relevant subject with an average grade of 65%, to include any essential subject(s).

Applicants will typically be required to pass the Título de Técnico Superior Universitario, and the first year of a university degree in a relevant subject with an average grade of 55% / 6.3 (on the 10 point scale) / 13 (on the 20 point scale), to include any essential subject(s).

Applicants will typically be required to pass the Zimbabwe General Certificate of Education at Advanced Level with grades BCC, to include any essential subject(s).


English Language Requirements

All courses at Abertay University are taught in English. If your first language is not English, you will need to demonstrate that you meet our English language requirements. Accepted English language qualifications include:

IELTS - overall score of 6.0 with no band lower than 5.5

TOEFL - overall score of 78 (individual elements: L-17, R-18, S-20, W-17)

Cambridge FCE/CAE/CPE - overall score of 169 on Cambridge Grading Scale

International Baccalaureate - English B at S5 or H4, English A no specific grade required

European Baccalaureate - English Language 1 at grade 6 or English Language 2 at grade 7

You do not need to prove your knowledge of English language if you are a national of certain countries. Please see English Language Requirements for the full list of accepted qualifications and further details.

 

If your academic qualifications aren't listed above, or if you have any further questions, please contact our international team using the form below. There is also lots of useful information for international applicants on how to apply, visa information, and studying in Scotland on our international pages.


Contact our International Team

This field is required
This field is required
Please enter a valid email address
Please enter a valid telephone number
Please choose how you would like to receive essential information about your application.
This field is required

Not sure if you're eligible for entry?

If you have the potential and motivation to study at university, regardless of your background or personal circumstances, we welcome your application.

We understand some people have faced extra challenges before applying to university, which is why we consider the background in which your academic grades have been achieved when making an offer.

If you expect to receive passes in three Scottish Highers (grades A-C) and have either ...

  • been in care
  • participated in a targeted aspiration-raising programme such as LIFT OFF, LEAPS, FOCUS West, or Aspire North
  • no family background of going to university
  • attended a school or lived in an area where not many people go to university

... we encourage you to submit an application.

Fees and funding

The course fees you'll pay and the funding available to you depends on factors such as your nationality, location, personal circumstances and the course you are studying. 

More information

Find out about grants, bursaries, tuition fee loans, maintenance loans and living costs in our undergraduate fees and funding section.

 

Scholarships

We offer a range of scholarships to help support your studies with us.

As well as Abertay scholarships for English, Welsh, Northern Irish and international students, there are a range of corporate and philanthropic scholarships available. Some are course specific, many are not. There are some listed below or you can visit the Undergraduate scholarship pages.

Abertay International Scholarship

This is an award of up to £12,000 for prospective international undergraduate students.

Abertay rUK Scholarship

This is a £4000 award for prospective undergraduate students applying from England, Wales or Northern Ireland.

The Robert Reid Bursary

Two £1,000 awards for students who have overcome challenges to attend university.

Careers

There’s a constant demand for graduates who can show proven ability to design, build and support software systems and develop computer applications that are effective, efficient and contribute to organisational success.

Graduates from this course have gone on to work for a wide range of organisations in industry, government, entertainment and educational sectors. Our graduates have found work in large multinationals, including …

  • Hewlett-Packard
  • BT
  • Logica
  • NCR
  • Nokia

… as well as smaller, local companies such as MTC and Brightsolid.

Female Ethical Hacking student Cheryl Torano

Choose Your Path

Computing graduates are employed, for example, as software developers, software testers, web developers, system analysts, and technical consultants. Many of our graduates have also gone on to postgraduate study.

Industry Links

Links with industry take place throughout all years, but especially in years 3 and 4. Speakers from the computing industry will give guest lectures.

Student on Lion Street, Dundee

Get inspired

Find out what some of our Computing graduates have gone on to do...

Man sits surrounded by computer screens

Ben Newcombe

Ben is on the two year Software Engineering Graduate Scheme at the BBC.

Find out more

A picture of Fraser Patullo standing in front of the Tay

Fraser Patullo

Fraser is Director of Engineering at Cherwell Software.

Find out more

A picture of Drew Buddie in a Captain America outfit delivering a presentation

Drew Buddie (aka Digital Maverick)

Drew has built up a large online following, he’s also Head of Computing at Brampton College.

Find out more

Always-On Online Open Day

We aim to immerse you in student life here at Abertay and give you a true feel for our courses and our amazing academic community.

  • Experience our Always-On Open Day anytime for a mix of:

    Subject and course presentations and videos.

  • Campus tours, info on applying, funding, student support and accommodation.

  • What the city of Dundee is like to live in.

Take time to soak it all in.

SEE ONLINE OPEN DAY

 

An Abertay Student on a yellow coloured background

Unistats

Unistats collates comparable information in areas students have identified as important in making decisions about what and where to study. The core information it contains is called the Unistats dataset (formerly the Key Information Set (KIS)).